10th Dubai International Food Safety Conference (DIFSC)

Camel Milk – The Product of the 21st Century: Food Safety, Quality and International Trade Requirements

Factors influencing the composition of camel milk and its suitability for use as a raw material in the manufacture of probiotic cultured dairy foods

László VARGA*,

Judit SÜLE*, Zsófia Nóra FÁBRI*, Judit JUHÁSZ†, Péter NAGY†

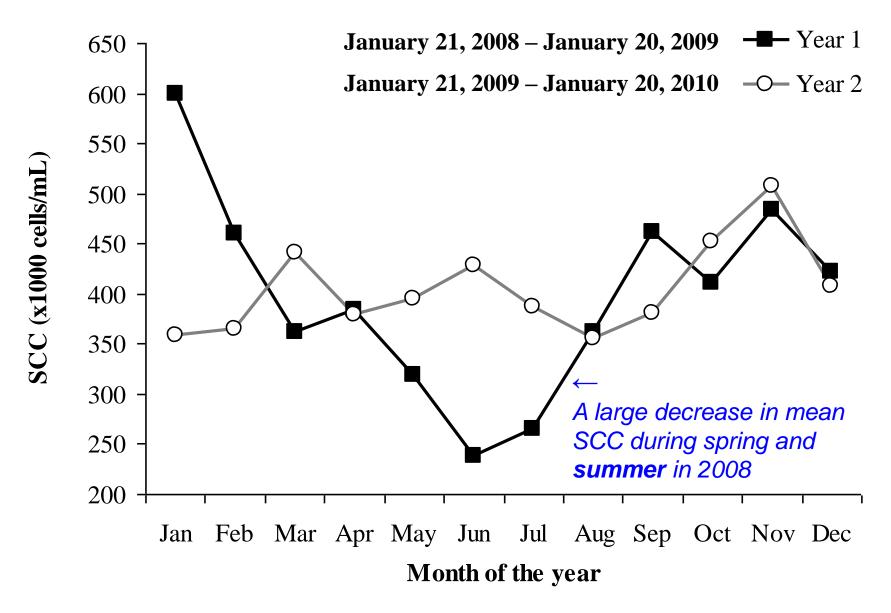
* University of West Hungary, Mosonmagyaróvár, Hungary

† Emirates Industries for Camel Milk and Products, Dubai, UAE

Global milk production (*IDF, 2011*)

- 721 billion kg in 2010 (100-105 kg/person):
 - 83% cow milk
 - 13% buffalo milk
 - 2.2% goat milk
 - 1.3% sheep milk
 - 0.3% camel milk
 - 0.2% other species' milk

Objectives


 Physicochemical and microbiological quality of raw milk influences its processing characteristics

- Aims of this research:
 - to monitor the microbial and chemical composition of raw camel milk produced by EICMP
 - to test the suitability of camel milk for use in the production of probiotic fermented milks

1. Microbiological quality of camel milk (Nagy et al., 2013)

Monitoring of raw camel milk quality at EICMP

- Determination of microbiological parameters: since **2006**
- Monitoring of chemical composition: since **2009**
- Bulk milk samples taken twice a day (following the milking sessions)
- No. of lactating camels: 186–458
- Duration of microbiological study: 2008 and 2009 (January 2008 – January 2010)

Figure 1: Monthly variation in mean SCC in bulk camel milk according to the year of monitoring (*Nagy et al., 2013*)

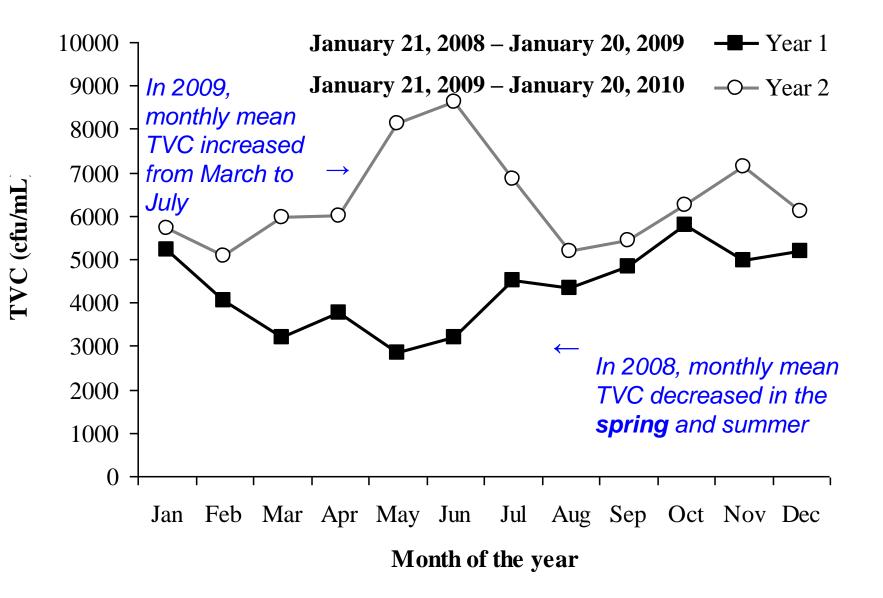


Figure 2: Monthly variation in mean TVC in bulk camel milk according to the year of monitoring (Nagy et al., 2013)

Mean SCC and TVC of camel milk at EICMP

- SCC = **394,000 cells/mL**
- TVC = 5,157 cfu/mL (excellent)

Nagy et al. (2013)

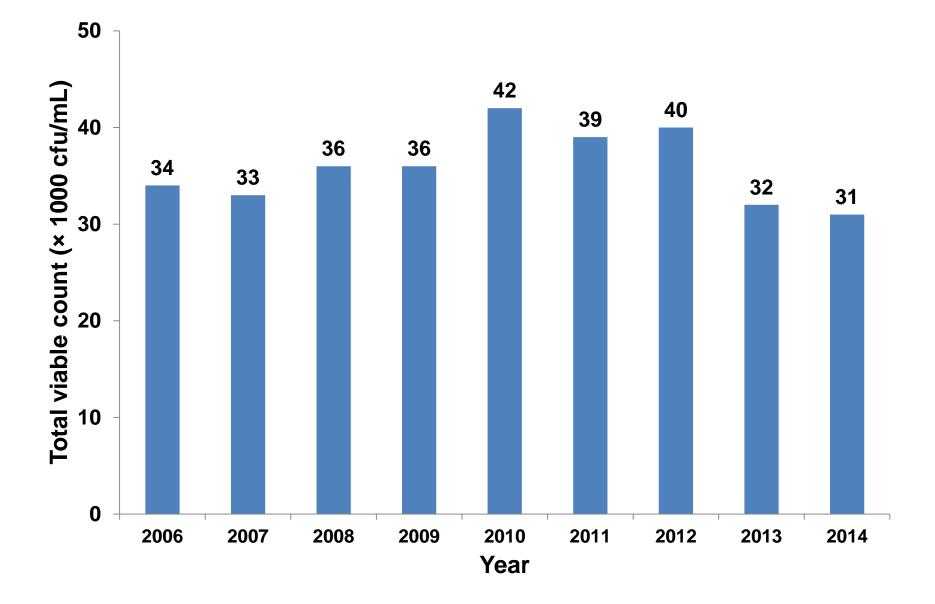
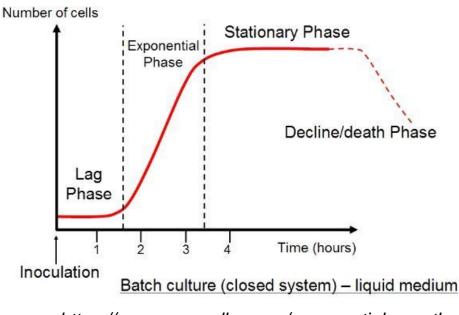



Figure 3: Annual weighted mean TVC (× 1000 cfu/mL) in bulk cow milk in Hungary

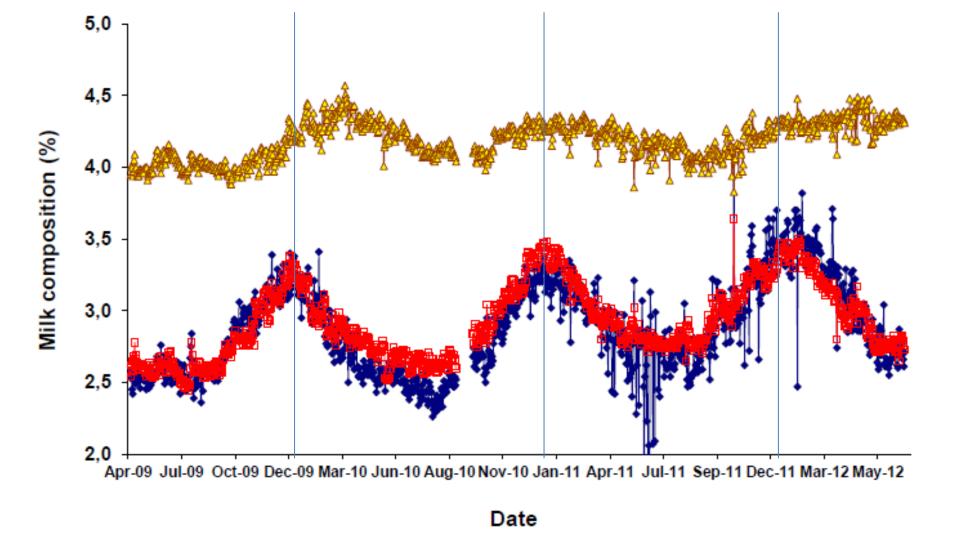
Growth potential of bacteria (a simple calculation)

- $t_g = 20 \text{ min}$
- No. of bacteria following
 48 h of growth: 2¹⁴⁴ (2.2 × 10⁴³)
- Weight of one cell: 1.1×10^{-12} g
- Total weight of bacteria after 48 h: 2.5 × 10²⁸ kg
- Weight of Earth: **6.0 × 10²⁴ kg**

Bacteria - Population Growth Curve

https://www.premedhq.com/exponential-growth

 Weight of bacterial mass following 48 h of unlimited growth under optimum conditions: 4000 × weight of planet Earth

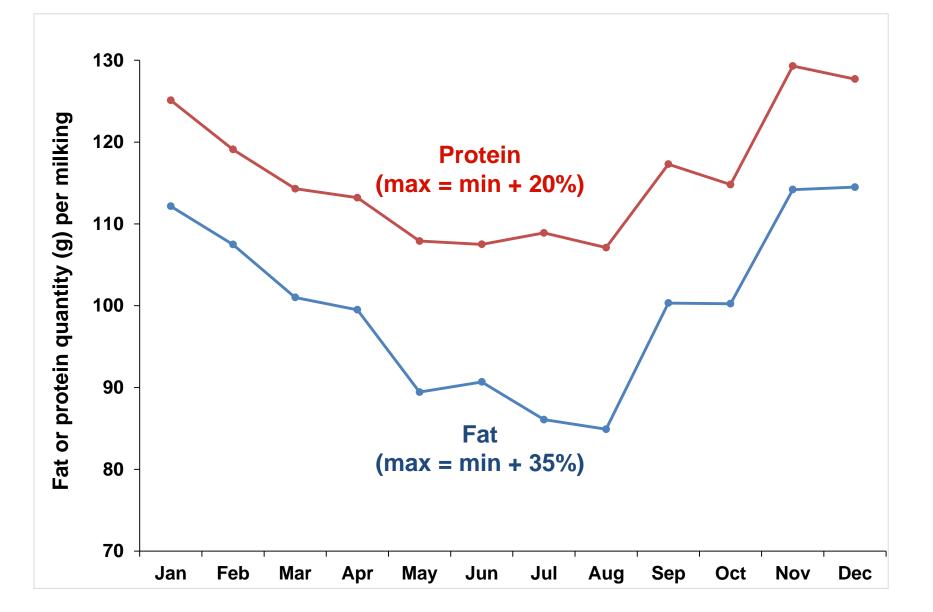

Cooperation between UWH and EICMP

- Regular discussions (Budapest, Mosonmagyaróvár, Dubai)
- Supervision of a PhD student (Ms. Zs. N. Fábri)
- Scientific publications (2 × JDS, 2 × MÁL, 2 × MS in preparation)
- Presentations at scientific conferences (ÓTN, Mosonmagyaróvár, Hungary; DIFSC 2015, Dubai, UAE)

• Research project(s) hopefully funded by EU...

. . .

2. Chemical composition of camel milk



-- Raw Milk Fat

-B-Raw Milk Protein

----Raw Milk Lactose

Figure 4: Changes in fat, protein and lactose contents of raw camel milk between April 2009 and May 2012

Figure 5: Seasonal changes in fat and protein production capacity of dromedary camels

- Calculated values [milk production (kg) × composition (%)].
- **Seasonal patterns** in protein and fat production.
- In winter:
 - low milk production, whereas
 - high fat and protein values (both in terms of % and absolute mass).
- Increased processing efficiency (e.g. cheese yield) in winter.
- Composition of final products may also vary depending on season.

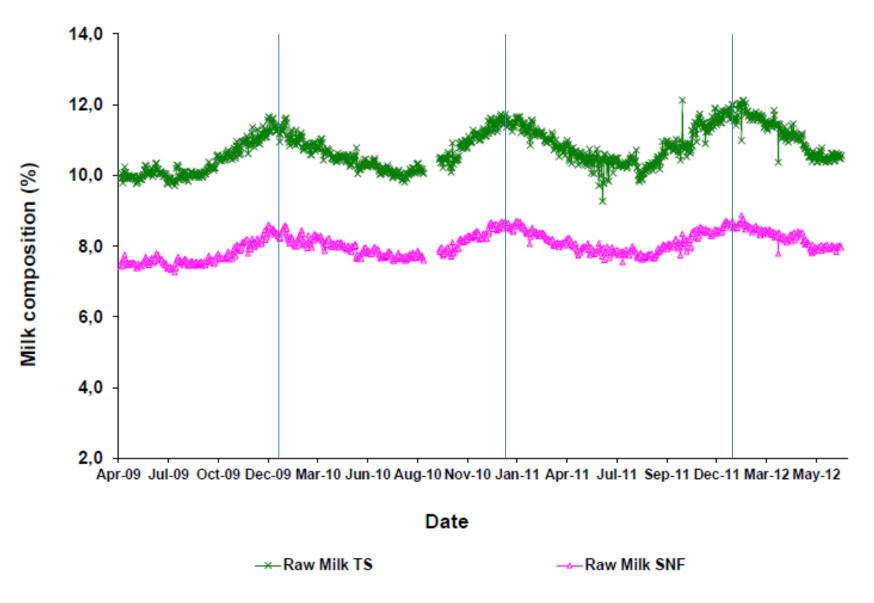


Figure 6: Changes in total solids and solids-not-fat contents of raw camel milk between April 2009 and May 2012

Mean compositional values of bulk camel milk at EICMP (2009-2012)

- Fat: **2.8** ± 0.33%
- Protein: **2.9** ± 0.26%
- Lactose: **4.2** ± 0.19%
- Solids-not-fat: **8.0** ± 0.39%
- Total solids: **10.6** ± 0.58%

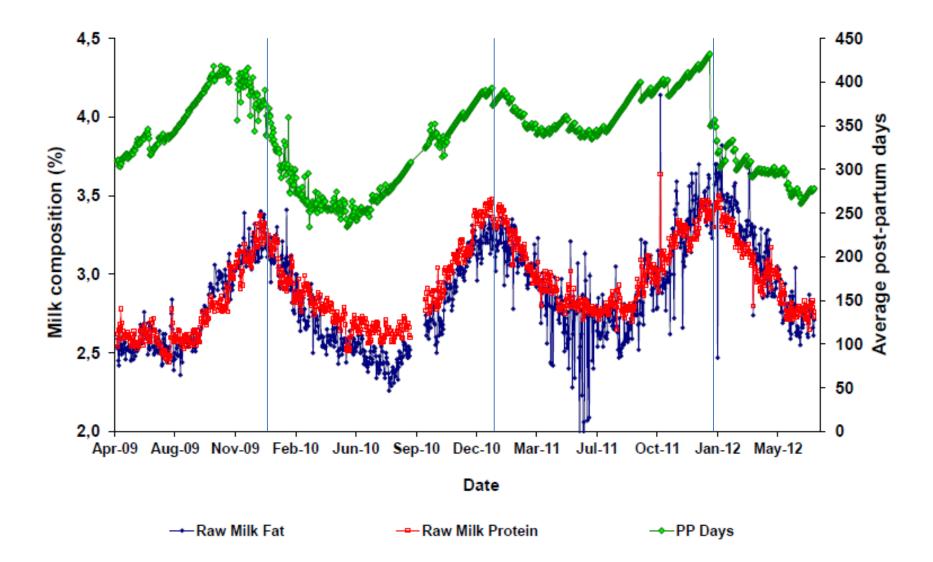


Figure 7: Changes in fat and protein contents of raw camel milk and average post-partum days between April 2009 and May 2012

- Chemical composition of milk is significantly influenced by both:
 - season and

– PPD.

- However, the effects of these two factors could not be separated in this study.
- Bottom line: an increase in both fat and protein cc is observed with increasing numbers of PPD, with all values being highest in winter,
- resulting in improved production/processing yields.

Factors affecting the chemical composition of camel milk

- **Exogenous** factors:
 - season
 - year
- Endogenous factors:
 - breed
 - age
 - parity
 - stage of lactation
 - level of milk production

3. Influence of milk composition on processing characteristics

Cheese-making

- Large seasonal variations in protein and fat contents (minima in August and maxima in mid-winter).
- These differences may alter the **sensory properties** of milk, and the **fat-to-casein** ratio may need to be **standardized** for cheese-making.
- General requirements:
 - Low SCC (preferably < 10⁵ cells/mL);
 - Low microbial load (< 10⁴ cfu/mL of milk), including psychrotrophs;
 - Free from pathogens and clostridia (*C. tyrobutyricum*);
 - Presence (abundance) of LAB;
 - No off-flavors;
 - Absence of antimicrobial agents;
 - High protein content [camel milk: β-lactoglobulin (absent) and κ-casein (low) → higher cheese yield and curd firmness, and reduced coagulation time].

- *Problems* encountered during cheese-making from camel milk include:
 - Prolonged rennet coagulation time:
 - limited availability of κ -CN (3.5% of caseins).
 - Soft (fragile) curd:
 - low TS (casein) content,
 - large casein micelles (up to 500 nm) \rightarrow less firm coagulum,
 - small fat globules (< 3 μm).
 - Reduced cheese yield:
 - significantly (up to 50%) lower values compared to cheese made from cow milk,
 - *however*: protein recovery and yield may be increased by UF.

Yogurt manufacture

- The higher the *PROTEIN* content of the milk, the stronger will be the resultant yogurt gel because proteins, along with Ca and P, give rise to the basic yogurt coagulum.
- Therefore, the protein content of milk must be increased (by SMP fortification, vacuum evaporation or UF) to around 40-50 g/L. EPS-producing starters or stabilizers (alginates, κ-carrageenan, etc.) may also be used.

- **FAT** plays no part in the formation of the yogurt gel. However, it is important with respect to **sensory quality**.
- Approx. 10-12 g/L is enough to provide yogurt with a pleasant mouthfeel → the original fat content of raw milk has to be reduced before further processing.

 LACTOSE, at around 42-45 g/L, forms the bulk of SNF in camel milk. Its role is to provide a substrate for the fermentation stage. *Problem: gelation of camel milk does not occur* at the isoelectric point of caseins (pH 4.6), because the size of micelles is too small to form a dense protein network observed in yogurt made from cow milk.

- Many LAB require B-group vitamins for growth → seasonal changes in the cc of VITAMINS in milk may affect
 - the metabolism of the culture with respect to
 - the rate of acid production and
 - the synthesis of flavor compounds and, thus,
 - the quality of yogurt.

• The cc of *MINERALS* (e.g. Ca) can also influence yogurt quality (i.e. gel firmness).

4. Survival of the microbiota in probiotic fermented milks during refrigerated storage (Varga et al., 2014)

Introduction

• LAB consumption through fermented milks is associated with improved health.

 Health-promoting *Bifidobacterium* and *Lactobacillus* spp. received attention as probiotic organisms → incorporated into dairy foods worldwide.

Beneficial effects depend on the number of viable cells reaching the human gut: ≥ 10⁶ cfu/mL should be present at the time of consumption if a health claim is to be made.

- Interest in camel milk is increasing in many countries because this product is (*Fábri et al., 2014a,b*):
 - devoid of β-lactoglobulin, whereas its major whey proteins include α -lactalbumin and serum albumin;
 - rich in β -casein, which is the dominant casein in camel milk;
 - contains reduced amounts of short chain (C_4-C_{12}) FAs and increased levels of medium and long chain $(C_{14}-C_{18})$ FAs;
 - higher in Na and Ca than are milks of other species;
 - a good source of certain vitamins (e.g. vitamin C).

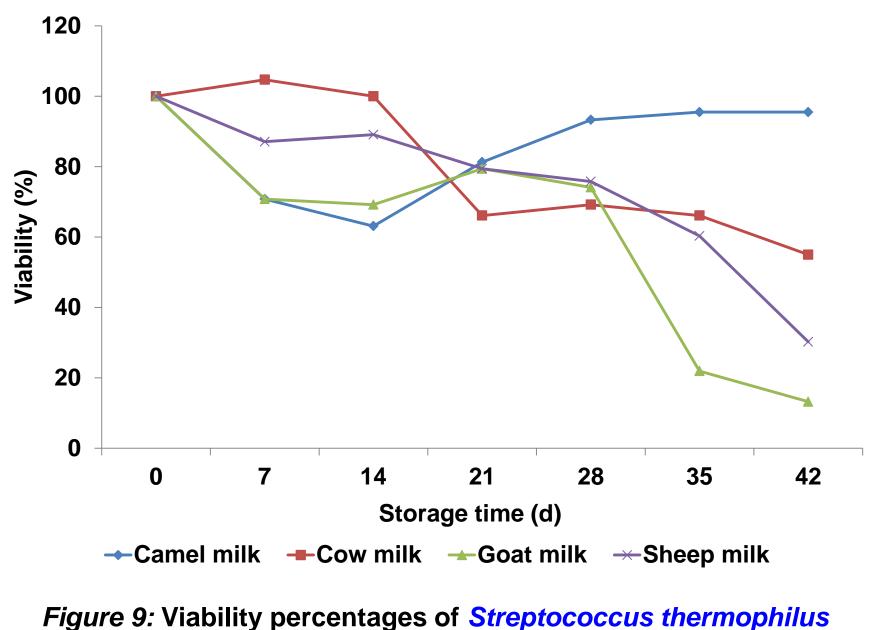
\downarrow

 The compositional differences between camel milk and other milks influence the growth and viability of LAB and bifidobacteria.

- Objective: monitoring the viability during refrigerated storage of
 - Lactobacillus acidophilus LA-5 (A),
 - Bifidobacterium animalis subsp. lactis BB-12 (B), and
 - Streptococcus thermophilus CHCC 742/2130 (T)

in probiotic cultured dairy foods made from **four varieties of milk** fermented by an ABT-type culture.

Materials and methods


- Raw materials:
 - dromedary camel milk (EICMP, Dubai, UAE),
 - cow milk (Lajta Hanság, Inc., Mosonmagyaróvár, HU),
 - goat milk (Tebike, Inc., Győr-Ménfőcsanak, HU),
 - sheep milk (PharmaGene-Farm, Inc., Mosonmagyaróvár, HU).
- Raw milks heated at 80°C for 10 min.
- Freeze-dried DVS culture (ABT-5; Chr. Hansen, Hørsholm, DK).
- Inoculation rate: 0.2 U/L [= 2.0% (v/v) bulk starter].
- Milks fermented at **37°C** until pH 4.6.
- Refrigerated storage at 4°C.

- Microbiological tests: after 0, 7, 14, 21, 28, 35, and 42 d of storage according to Süle et al. (2014):
 - S. thermophilus: M17 agar incubated at 45°C for 24 h aerobically;
 - *L. acidophilus*: MRS-clindamycin-ciprofloxacin agar incubated at 37°C for 72 h in anaerobiosis;
 - *B. animalis* subsp. *lactis*: Transgalactosylated oligosaccharidesmupirocin lithium salt (TOS-MUP) agar incubated at 37°C for 72 h under anaerobic conditions.

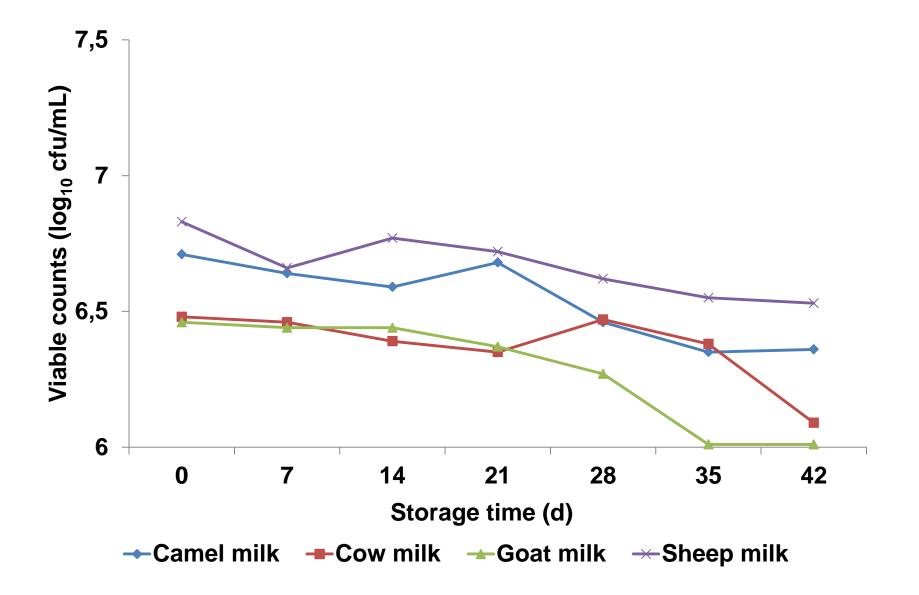

- Statistical analysis:
 - results subjected to ANOVA (STATISTICA 9.0; StatSoft, Tulsa, OK);
 - time and product as fixed factors and repetition as covariate in the model;
 - significant differences among \log_{10} cfu/mL means determined by Duncan's multiple comparison test at P < 0.05 (StatSoft).

Figure 8: Survival of *Streptococcus thermophilus* in probiotic fermented milks during storage at 4°C

in probiotic fermented milks during storage at 4°C

Figure 10: Survival of *Lactobacillus acidophilus* LA-5 in probiotic fermented milks during storage at 4°C

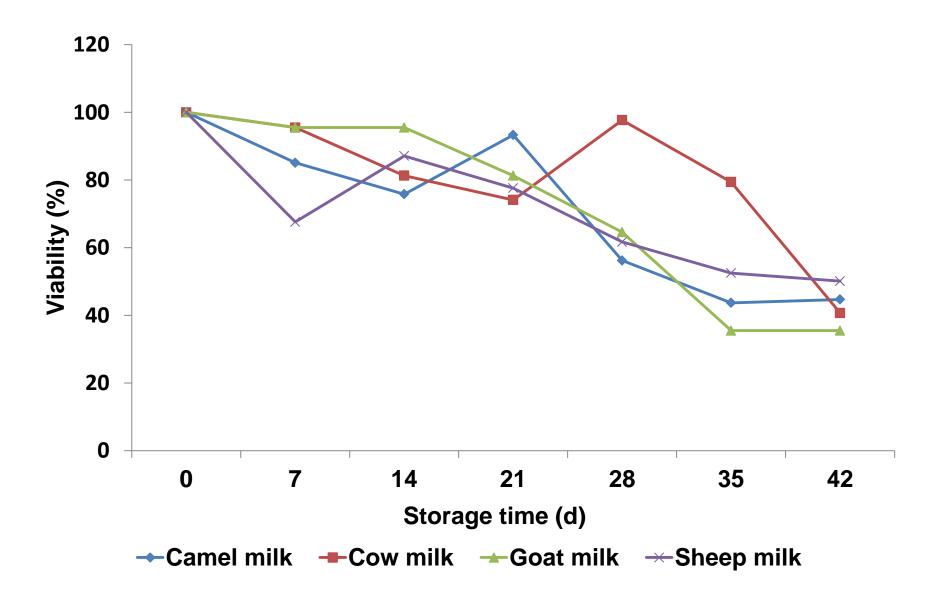


Figure 11: Viability percentages of Lactobacillus acidophilus LA-5 in probiotic fermented milks during storage at 4°C

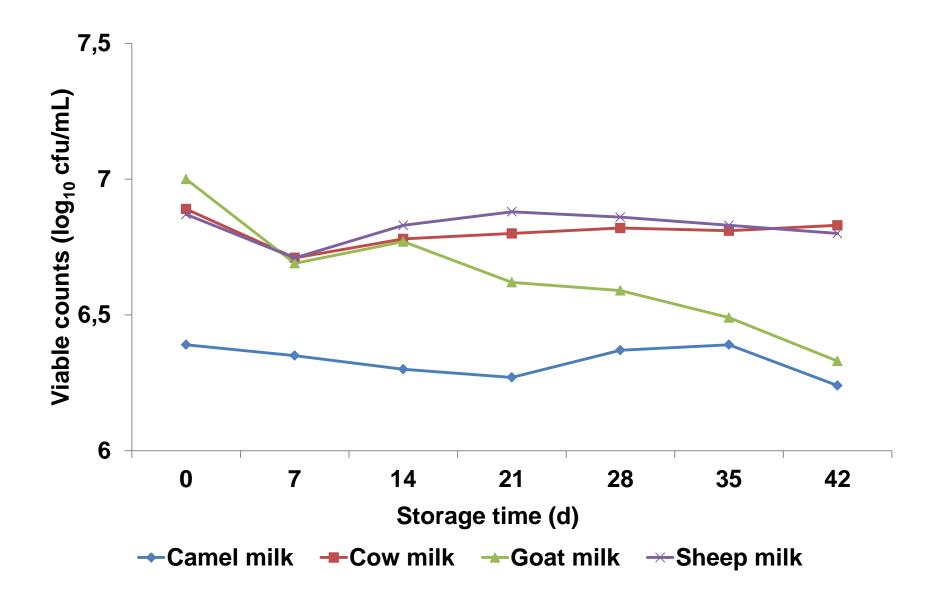


Figure 12: Survival of Bifidobacterium animalis subsp. lactis BB-12 in probiotic fermented milks during storage at 4°C

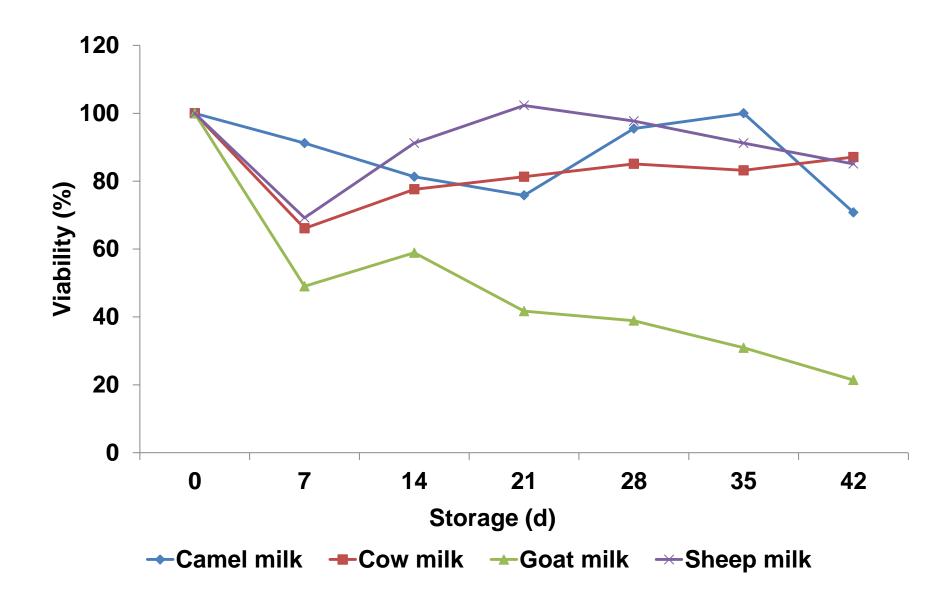


Figure 13: Viability percentages of Bifidobacterium animalis subsp. lactis BB-12 in probiotic fermented milks during storage at 4°C

Conclusions

- All four varieties of milk proved to be **suitable raw materials** for the manufacture of high-quality ABT-type fermented dairy products.
- The development of **camel milk based probiotic cultured milks** appears to be very promising. However, sensory studies, technology development activities, and market researches are needed before such food products can be successfully commercialized.
- First study to evaluate the survival of probiotic lactobacilli and bifidobacteria in fermented camel milk.

Thank you for the attention

References

- Fábri, Zs.N., Varga, L., Nagy, P. 2014a. Production, general characteristics, chemical composition and health benefits of camel milk. Literature review. 1. Physical and chemical properties, protein and fat contents (In Hungarian). *Magyar Állatorvosok Lapja* 136, 485–493.
- Fábri, Zs.N., Nagy, P., Varga, L. 2014b. Production, general characteristics, chemical composition and health benefits of camel milk. Literature review. 2. Lactose, minerals and vitamin contents, health benefits (In Hungarian). *Magyar Állatorvosok Lapja* 136, 553–557.
- International Dairy Federation (IDF). 2011. The World Dairy Situation 2011. IDF Bulletin No. 451/2011. IDF, Brussels, 225 pp.
- Nagy, P., Faye, B., Marko, O., Thomas, S., Wernery, U., Juhasz, J. 2013. Microbiological quality and somatic cell count in bulk milk of dromedary camels (*Camelus dromedarius*): Descriptive statistics, correlations, and factors of variation. *Journal of Dairy Science* 96, 5625–5640.
- Süle, J., Kőrösi, T., Hucker, A., Varga, L. 2014. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. *Brazilian Journal of Microbiology* 45, 1023–1030.
- Varga, L., Süle, J., Nagy, P. 2014. *Short communication:* Survival of the characteristic microbiota in probiotic fermented camel, cow, goat, and sheep milks during refrigerated storage. *Journal of Dairy Science* 97, 2039–2044.